Healthcare Organizations Deem Data Security and Compliance as Leading Factors in Hybrid Cloud Adoption
Read Article

By Sandeep Bhargava, Managing Director of Asia Pacific Japan (APJ), Rackspace

It’ll be a while before we get our hands on the fifth-generation (5G) technology in India. However, telecom players have already commenced their planning for the introduction of 5G and are waiting for the spectrum auction by the Government of India. This is good news for edge computing as 5G deployment in India will pave the way for enhanced speed and bandwidth.

Telcos across the world have been experimenting with 5G testing in the recent few years and we can now look forward to learning how 5G can enable edge computing and help organizations act on insights closer to where the data is created. Frost & Sullivan forecast that this development will push edge computing to the next level. By 2022, 90% of industrial enterprises are expected to leverage edge computing.

The market is seeing remarkable growth worldwide. MarketsandMarkets predicts that global edge computing will see a boom from USD 3.6 billion in 2020 to USD 15.7 billion by 2025, at a CAGR of 34.1%. The Asia Pacific market is expected to grow the highest owing to the rising adoption of advanced technologies, such as IoT and cloud computing.

Gartner defines edge computing as “a part of a distributed computing topology in which information processing is located close to the edge – where things and people produce or consume that information. Edge computing augments and expands the possibilities of today’s primarily centralized, hyperscale cloud model, supports the systemic evolution and deployment of the IoT, and supports entirely new application types, enabling next-generation digital business applications.”

So, it’s time to hit reset. Because if approached in the right way, the edge computing philosophy, and the outcomes it encourages, can drive powerful transformations in local companies with data and drive effective process for decision-making.

Why should filtering out the edge computing hype matter to IT leaders?

Businesses are already generating huge amounts of data, with exponential growth every year as more devices come online — including many items that previously had no business being anywhere near the internet: toothbrushes, doorbells, coffee machines, smart speakers, watches, and – infamously – juicers. As the World Economic Forum reports: “The world produces 2.5 quintillion bytes a day, and 90% of all data has been produced in just the last two years.”

This has coincided with the growth in hyperscale cloud adoption. Edge computing solves today’s cloud-era challenges around moving and managing data to ensure it generates the most value for the minimum of cost, and that it can be processed and acted on in a timely fashion.

Edge’s advantages can be summarised as follows:

● Lower latency, since it’s quicker and more reliable to send data to a local point-of-presence than it is to send it to a hyperscale cloud provider’s data center.
● Decreased bandwidth use and associated costs.
● Decreased need for large server resources and associated costs.
● Data that previously wasn’t feasible to send to a centralized data center can now be analyzed to drive new functionality or insights.

Defining the foundations of edge computing

To put the philosophy to work and unlock these advantages, we first need to define the foundational elements of edge computing.

Illustrative edge computing use cases include sensors in a factory or medical setting, a remote oil pipeline, or surveillance cameras designed to recognize security threats. The high volume of data generated by these devices drives time-sensitive decisions or actions. It simply wouldn’t be ideal or cost-effective to send it all to the cloud for processing and storage.

In cases like these we’re looking to create the fewest number of hops between the device generating the data and the first – but not the only or last – “thing” that will do something with that data.
On this basis, the key components of an edge computing network are the public cloud, compute edge, device edge, and the sensor.

It is clear that many enterprise models typically encompass at least two of these things – cloud plus one other – whether you formally recognize them as having an edge component or not. So it’s a diversion to focus too much on “edge,” or to hype edge computing as inherently and automatically transformative. Instead, the intended business outcome – and the practical application of technology to deliver on it – should always be your strategic driver. Not edge computing for edge computing’s sake.

The right way to discern what edge computing means to your organization

To understand the extent to which you need to integrate an edge computing philosophy into your tech strategy, you first need to identify your data types. How critical is your data? Is it time sensitive? How big is it?

You also need to understand the level of compute required. Processing data in the cloud can quickly get expensive. So can pulling it back out or making repeat queries if your initial ones are wrong or need following up on. So do you really need to send it to the cloud? And even if you can afford to, is the latency involved acceptable for your use case?

Edge computing is not just a computing challenge either. It’s often about short- or medium-term storage of data for reuse, for example. So the level and location of storage you need require careful consideration.

Another key question, and one that demands some creative thinking, is whether or not processing your data nearer to the point it is generated would unlock new functionality for your business or customers.

Then, as always, there’s the need for security. While an edge solution is as secure as any other system, if it’s well designed, the biggest consideration is the increase in exploitable attack vectors that comes with a proliferation of edge devices. Most edge-specific security issues relate to poorly implemented and maintained code on those devices. There have been instances of these being hijacked into botnets for orchestrating distributed denial-of-service (DDoS) attacks, for example. You need to adopt a security-first mindset, but that’s no different to working with any other technology.

A note of caution, however. Services running in non-centralized locations for no good reason are not an edge computing challenge or strategy. That’s just things in the wrong place. Think about an important intranet site that started small but now contains essential documentation. That really should be moved into the redundant, centralized cloud-provider space and out of the local communications room. The same goes for mail servers and most classes of object storage.

Edge computing and the art of questioning

In the case of edge computing, every company should start by asking itself, “is my data in the right place?” rather than “what is my edge computing strategy?”

As data volumes are growing, more companies are beginning to think harder about where to put data for optimal costs and performance. And the importance of a solid data strategy continues to grow as the IoT revolution forges ahead and more devices are brought online, fuelling an explosion in data processing and storage requirements.

If you’re one of those companies, to get to the right answers about your data processing requirements and where that should be happening, you first need to ask the right questions.
The answer you get won’t always be edge computing. And that’s OK, no matter what anybody else is doing.

If you have an interesting article / experience / case study to share, please get in touch with us at [email protected]

(Excerpt) Read more Here | 2021-02-25 11:44:02
Image credit: source


Please enter your comment!
Please enter your name here

This site uses Akismet to reduce spam. Learn how your comment data is processed.